
### BENELEC

## Coaxial Cables for Medium-Frequency Applications





## **Coaxial Cables for Medium-Frequency Applications**

#### Introduction

Telecommunications technology is moving forward rapidly and the need for fast and reliable interactive systems is becoming increasingly important. It is imperative that businesses can rely on being able to communicate efficiently whenever required.

Radio frequency airwaves now have a huge quantity of traffic due to increased mobile communications and this rise is set to increase dramatically. Airwaves are therefore extremely busy and so communications signals are moving up to higher bandwidths, using higher frequencies to transmit data and utilising the medium frequency bands.

Today's cables need better screening and purity of signal because of the higher risk of attenuation or distortion. In addition, there is a strong need for greater improvement of the physical properties such as flexibility, handling and termination. Combined with higher technology in cable materials and manufacturing processes, there is no longer a need to sacrifice physical characteristics for electrical performance.

Habia Cable has developed, together with our successful world-wide telecommunications customer, two new products: Flexiform and Multibend. They have been designed to meet our customer's demands in a world where product innovation is moving forward at a tremendous pace. Habia Cable is committed to developing partnerships for the future and working together into the new century.

**Contents** 

| Introduction and contents                |
|------------------------------------------|
| Flexiform information sheet              |
| Flexiform 401 datasheet                  |
| Flexiform 402 datasheet                  |
| Flexiform 405 datasheet                  |
| Multibend information sheet              |
| Multibend 401 datasheet                  |
| Multibend 402 datasheet                  |
| Multibend 405 datasheet                  |
| Technical information for coaxial cables |
| Habia Cable contacts                     |

Flexiform is a reformable alternative to traditional semi-rigid coaxial cables. Used, for example with circuit boards, where the cable follows a specific path, it can be pulled off a reel and cut to the exact required length, then stripped and formed by hand without the need for special tools. Handling is similar to any standard coaxial cable, which means you can use your existing cut and strip machines.

We have developed a range of Flexiform types, with many additional options available for custom design, including conductor types, screening alternatives and jacket material variations.

Multibend is the completely flexible alternative to semi-rigid coaxial cables. Electrical performance is almost identical. The solid copper tube normally used in a semi-rigid coax is replaced with a wrapped silver-plated copper foil and a braid, giving excellent shielding properties. Multibend is extremely cost effective, eliminating waste lengths traditionally associated with semi-rigids and with minimal performance penalties.

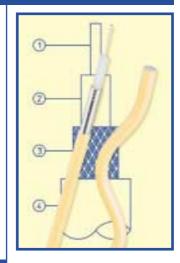
As with Flexiform, there is a range of standard types and many options for custom design. Habia Cable can also provide you with a completely halogen-free version of Multibend.

Both Flexiform and Multibend can be used with all standard types of semi-rigid connectors.

Photographic credits:

Cover 1: Racal Group Services

Cover 4: Globalstar Project for Alcatel


Rear: Ericsson Radio Systems AB

Website.....www.benelec.com.au
Email .....inquiries@benelec.com.au
Telephone....+61-2-9364 7000

## The Reformable Alternative to Semi-Rigid Coaxial Cables

#### **Engineering data**

| Habia<br>ref     | 1<br>Inner<br>conductor<br>material<br>OD (mm) | ②<br>Dielectric<br>PTFE<br>OD (mm) | 3<br>Standard<br>Flexiform<br>Outer<br>Conductor<br>OD (mm) | 4<br>Flexiform FJ<br>with FEP<br>Outer<br>Jacket<br>OD (mm) | (4) Flexiform HFJ with Zero- Halogen Outer Jacket OD (mm) | Variant of                     |
|------------------|------------------------------------------------|------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| Flexiform<br>401 | SPC<br>1,6                                     | 5,3                                | 6,4<br>[0,250]                                              | 7,2                                                         | 7,6                                                       | M17/129-00001<br>M17/129-RG401 |
| Flexiform<br>402 | SCW<br>0,92                                    | 3,0                                | 3,6<br>[0,141]                                              | 4,1                                                         | 4,6                                                       | M17/130-00001<br>M17/130-RG402 |
| Flexiform<br>405 | SCW<br>0,51                                    | 1,7                                | 2,2<br>[0,086]                                              | 2,6                                                         | 3,2                                                       | M17/133-00001<br>M17/133-RG405 |



Note: All figures are nominal unless otherwise specified SPC = Silver Plated Copper, SCW = Silver Plated Copper Weld.

#### Features and benefits

- · Excellent electrical properties
- · Good attenuation
- · Easier bending and forming
- · Usage of standard semi-rigid connectors
- · High temperature range
- · Utilise standard cut and strip machinery
- Up to 20 GHz high operating frequency
- · Excellent against crosstalk
- · Good flexibility
- · Simple mounting
- · Outstanding shielding properties

#### Ease of use

Unique ability to be hand formed.

High degree of shape retention after bending and exhibits no buckling when reformed or flexed.

Routed at the time of installation and able to conform to extremely tight routing. Eliminates many factors associated with pre-made assemblies.

#### Cost effective

A great advantage is the ability to simply shape or route the cable by hand and connect the assembly, eliminating the lead-time associated with pre-formed semi-rigid assemblies.

No special forming tools, no additional assembly costs.

No special packaging and shipping requirements.

Long lengths delivered on standard spools.

Significant cost advantages over semi-rigid coax - with minimal performance penalty.

#### Custom design

Standard Flexiform types supplied without a jacket.

Jacket options include fluoropolymer or halogen-free, cross-linked or flame-retardent. Standard jacket colour is blue.

All other coaxial types can also be manufactured using the same process (ie Flexiform 179) Other colours and conductor materials are available on request. Please ask for details.

All types can be supplied with non-magnetic (SPC) conductor, if required.

All types can be supplied with an extra copper foil under the braid, if required.

#### Connectors

Standard semi-rigid connectors (solder or crimp) can be used on all types above.

Note: All figures are nominal unless otherwise specified

#### **Typical Applications**

RF & microwave test equipment Portable hand sets Cabinet systems Antenna applications Radar equipment

For even better performance, all Flexiform types can be manufactured with an extra copper foil under the braid.

Website . . . www.benlec.com.au Email . . inquiries@benelec.com.au Telephone +61-2-9364 7000

## The Reformable Alternative to Semi-Rigid Coaxial Cables

## Type: Flexiform 401

#### **Engineering data**

#### Cable design

Centre conductor . . . silver-plated copper wire, non magnetic Dielectric . . . . . . . . . . . . . solid extruded PTFE Outer conductor . . . tin-soaked copper braid, Coverage 100%

#### **Electrical data**

| Impedance                      | 50 Ohms              |
|--------------------------------|----------------------|
| Capacitance                    | 94 pF/m              |
| Velocity of signal propagation | 70%                  |
| Signal delay                   | 4,8 ns/m             |
| Working voltage, maximum       | 3000V RMS            |
| Attenuation, nominal           | see graph right      |
| Power, nominal                 | see graph right      |
| Suitable for frequencies       | up to 20 GHz         |
| Shielding effectiveness        | typically <-130 dB/m |

#### General data

| rialliliability, passesiEC 60 332-3 |  |
|-------------------------------------|--|
| Minimum bend radius                 |  |
| single bend                         |  |
| multiple bends120mm                 |  |

#### **Connectors**

Connector..... as semi-rigid M17/129-RG401

#### **Additional information**

#### Flexiform 401 (Standard):

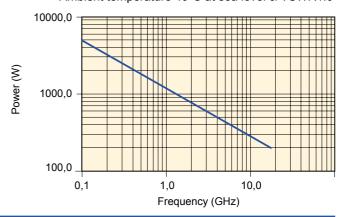
| Jacketnone                        |  |
|-----------------------------------|--|
| OD6,4mm                           |  |
| Weight, nominal                   |  |
| Operating temperature40 to +165°C |  |

#### Flexiform 401 FJ

| Jacket                | FEP, Blue    |
|-----------------------|--------------|
| OD                    | 7,2mm        |
| Weight, nominal       | 130kg/km     |
| Operating temperature | 40 to +165°C |

#### Flexiform 401 HFJ

| Jacket                | . halogen-free, flame-retardent, Blue |
|-----------------------|---------------------------------------|
| OD                    | 7,6mm                                 |
| Weight, nominal       |                                       |
| Operating temperature | 30 to +80°C                           |


Delivered on standard spools in long lengths, giving less waste than semi-rigids.

#### **Cable Attenuation**



#### **Average Power**

Ambient temperature 40°C at sea level & VSWR1.0



#### **Custom design**

All MIL types of coaxial cables can be manufactured using the Flexiform method or process.

Flexiform can be manufactured with an extra copper foil under the braid.

Other impedance versions available on request.

Different types of outer jacket are also available. Please ask for details.

For even better performance, all Flexiform types can be manufactured with an extra copper foil under the braid.

Website.www.benelec.com.auEmail.inquiries@benelec.com.auTelephone.+61-2-9364 7000

## Type: Flexiform 402

## The Reformable Alternative to Semi-Rigid Coaxial Cables

#### **Engineering data**

#### Cable design

Centre conductor . . . . . silver-plated copper-clad steel wire Dielectric . . . . . . . . . . solid extruded PTFE Outer conductor . . . tin-soaked copper braid, Coverage 100%

#### **Electrical data**

| Impedance                      | 50 Ohms              |
|--------------------------------|----------------------|
| Capacitance                    | 94 pF/m              |
| Velocity of signal propagation | 70%                  |
| Signal delay                   | 4,8 ns/m             |
| Working voltage, maximum       | 2500V RMS            |
| Attenuation, nominal           | see graph right      |
| Power, nominal                 | see graph right      |
| Suitable for frequencies       | up to 20 GHz         |
| Shielding effectiveness        | typically <-130 dB/m |

#### General data

| Flammability, passesIEC 60 332 | 2-3 |
|--------------------------------|-----|
| Minimum bend radius            |     |
| single bend                    | nm  |
| multiple bends40m              | nm  |

#### **Connectors**

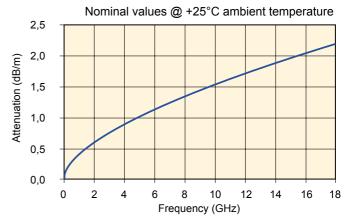
Connector..... as semi-rigid M17/130-RG402

#### **Additional information**

#### Flexiform 402 (Standard):

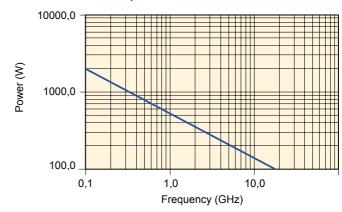
| Jacket none                       |  |
|-----------------------------------|--|
| OD3,6mm                           |  |
| Weight, nominal                   |  |
| Operating temperature40 to +165°C |  |

#### Flexiform 402 FJ


| Jacket FEP, Blue                  |
|-----------------------------------|
| OD4,1mm                           |
| Weight, nominal                   |
| Operating temperature40 to +165°C |

#### Flexiform 402 HFJ

| Jacket                | halogen-free, flame-retardent, Blue |
|-----------------------|-------------------------------------|
| OD                    |                                     |
| Weight, nominal       |                                     |
| Operating temperature | 30 to +80°C                         |


Delivered on standard spools in long lengths, giving less waste than semi-rigids.

#### Cable Attenuation



#### **Average Power**

Ambient temperature 40°C at sea level & VSWR1.0



#### **Custom design**

All MIL types of coaxial cables can be manufactured using the Flexiform method or process.

Flexiform can be manufactured with a non-magnetic SPC conductor and with a copper foil under the braid.

Other impedance versions available on request.

Different types of outer jacket are also available. Please ask for details.

For even better performance, all Flexiform types can be manufactured with an extra copper foil under the braid.

## The Reformable Alternative to Semi-Rigid Coaxial Cables

## Type: Flexiform 405

#### **Engineering data**

#### Cable design

Centre conductor . . . . . silver-plated copper-clad steel wire Dielectric . . . . . . . . . . . solid extruded PTFE Outer conductor . . . tin-soaked copper braid, Coverage 100%

#### **Electrical data**

| Impedance                      | 50 Ohms                |
|--------------------------------|------------------------|
| Capacitance                    | 94 pF/m                |
| Velocity of signal propagation | 70%                    |
| Signal delay                   | 4,8 ns/m               |
| Working voltage, maximum       | 1500V RMS              |
| Attenuation, nominal           | see graph right        |
| Power, nominal                 | see graph right        |
| Suitable for frequencies       | up to 20 GHz           |
| Shielding effectiveness        | . typically <-130 dB/m |

#### General data

| Flammability, passes | IEC 60 332-3 |
|----------------------|--------------|
| Minimum bend radius  |              |
| single bend          | 6mm          |
| multiple bends       | 25mm         |

#### **Connectors**

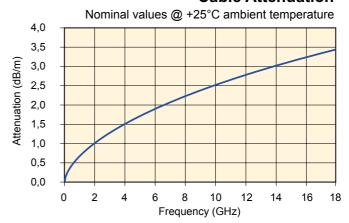
Connector..... as semi-rigid M17/133-RG405

#### **Additional information**

#### Flexiform 405 (Standard):

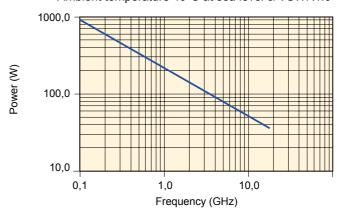
| Jacketnone                        |
|-----------------------------------|
| OD                                |
| Weight, nominal                   |
| Operating temperature40 to +165°C |

#### Flexiform 405 FJ


| Jacket                | FEP, Blue    |
|-----------------------|--------------|
| OD                    | 2,6mm        |
| Weight, nominal       | 18kg/km      |
| Operating temperature | 40 to +165°C |

#### Flexiform 405 HFJ

| Jacket                | halogen-free, flame-retardent, Blue |
|-----------------------|-------------------------------------|
| OD                    | 3,2mm                               |
| Weight, nominal       |                                     |
| Operating temperature | 30 to +80°C                         |


Delivered on standard spools in long lengths, giving less waste than semi-rigids.

#### **Cable Attenuation**



#### **Average Power**

Ambient temperature 40°C at sea level & VSWR1.0



#### **Custom design**

All MIL types of coaxial cables can be manufactured using the Flexiform method or process.

Flexiform can be manufactured with a non-magnetic SPC conductor and with a copper foil under the braid.

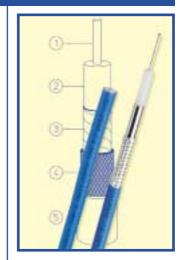
Other impedance versions available on request.

Different types of outer jacket are also available. Please ask for details.

For even better performance, all Flexiform types can be manufactured with an extra copper foil under the braid.

 Website.
 www.benelec.com.au

 Email.
 inquiries@benelec.com.au


 Telephoen.
 .+61-2-9364 7000

By replacing the solid copper tube with a wrapped silver-plated copper foil and a braid, a combination of a semi-rigid coaxial cable and one with a flexible braid is achieved.

## The Flexible Alternative to Semi-Rigid Coaxial Cables

#### **Engineering data**

| Habia<br>ref     | Inner<br>conductor<br>material<br>OD (mm) | ②<br>Dielectric<br>PTFE<br>OD (mm) | ③ ④  Outer Conductor OD (mm)/[in] | ⑤ Multibend FJ with FEP Outer Jacket OD (mm) | ⑤ Multibend HFJ with Zero- Halogen Outer Jacket OD (mm) |                                |
|------------------|-------------------------------------------|------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------|--------------------------------|
| Multibend<br>401 | SPC<br>1,6                                | 5,3                                | 6,4<br>[0,250]                    | 7,2                                          | 7,6                                                     | M17/129-00001<br>M17/129-RG401 |
| Multibend<br>402 | SCW<br>0,92                               | 3,0                                | 3,6<br>[0,141]                    | 4,1                                          | 4,6                                                     | M17/130-00001<br>M17/130-RG402 |
| Multibend<br>405 | SCW<br>0,51                               | 1,7                                | 2,2<br>[0,086]                    | 2,6                                          | 3,2                                                     | M17/133-00001<br>M17/133-RG405 |



Note: All figures are nominal unless otherwise specified SPC = Silver Plated Copper, SCW = Silver Plated Copper Weld.

#### **Additional information**

- · Excellent electrical properties
- · Good attenuation
- · Outstanding flexibility
- · Simple mounting
- · Utilise standard cut and strip machinery
- · Up to 20 GHz high operating frequency
- · Excellent against cross-talk
- Usage of standard semi-rigid connectors
- · Excellent shielding properties

#### **Typical Applications**

Cabinet systems
Antenna applications
Combiners
Satellite equipment
Medical equipment
Military equipment

#### Ease of use

Multibend is highly flexible, at the same time maintaining a level of performance almost the same as a traditional semi-rigid coaxial, without any of the associated problems.

Handling is very similar to standard coaxes.

Eliminates many factors associated with pre-made assemblies.

#### **Cost effective**

Delivered on standard spools in long lengths, giving less scrap than semi-rigids.

Offers significant cost advantages over semi-rigid coax - with minimal performance penalty Utilise standard forming tools.

No additional assembly costs.

No special packaging or shipping requirements.

#### **Custom design**

Jacket options include fluoropolymer or halogen-free, cross-linked or flame-retardent. Standard jacket colour is blue.

All other coaxial types can be manufactured using the same process (ie Multibend 179)

All types can be supplied with non-magnetic (SPC) conductor, if required.

Alternatively a completely halogen-free option is available for all types.

Please ask for details.

#### Connectors

Standard semi-rigid connectors (solder or crimp) can be used on all types above.

Note: All figures are nominal unless otherwise specified

#### **Custom Design**

A completely halogen-free version is available for all types

Website... www.benelec.com.au Email .. inquiries@benelec.com.au Telephone. . +61-2-9364 7000

## The Flexible Alternative to Semi-Rigid Coaxial Cables

## Type: Multibend 401

#### **Engineering data**

#### Cable design

#### **Electrical data**

| Impedance                      | 50 Ohms              |
|--------------------------------|----------------------|
| Capacitance                    | 94 pF/m              |
| Velocity of signal propagation | 70%                  |
| Signal delay                   | 4,8 ns/m             |
| Working voltage, maximum       | 3000V RMS            |
| Attenuation, nominal           | see graph right      |
| Power, nominal                 | see graph right      |
| Suitable for frequencies       | up to 20 GHz         |
| Shielding effectiveness        | typically <-100 dB/m |

#### General data

| Flammability, passes | IEC 60 332-3 |
|----------------------|--------------|
| Minimum bend radius  |              |
| single bend          | 40mm         |
| multiple bends       | 80mm         |

#### **Connectors**

Connector.....as semi-rigid M17/129-RG401

#### **Additional information**

#### Multibend 401 FJ (Standard):

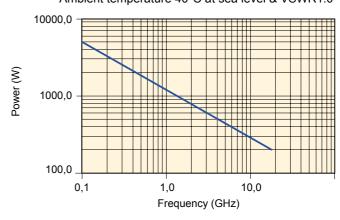
| Jacket                | FEP, Blue    |
|-----------------------|--------------|
| OD                    | 7,2mm        |
| Weight, nominal       | 130kg/km     |
| Operating temperature | 55 to +165°C |

#### Multibend 401 HFJ

| Jacket                | halogen-free, flame-retardent, Blue |
|-----------------------|-------------------------------------|
| OD                    |                                     |
| Weight, nominal       |                                     |
| Operating temperature | 30 to +80°C                         |

Delivered on standard spools in long lengths, giving less waste than semi-rigids.

# Cable Attenuation Nominal values @ +25°C ambient temperature 1,8 1,6 1,4 1,4 0,8 0,6 0,4 0,2


#### Average Power

16

Ambient temperature 40°C at sea level & VSWR1.0

Frequency (GHz)

10



#### **Custom design**

0.0

All MIL types of coaxial cables can be manufactured using the Multibend method or process.

We can also manufacture a completely halogen-free version.

Different types of outer jacket are also available. Please ask for details.

A completely halogen-free version is available for all types.

 Website
 .www.benelec.com.au

 Email
 .inquiries@benelec.com.au

 Int. tel
 +61-2-9364 7000

## Type: Multibend 402

## The Flexible Alternative to Semi-Rigid Coaxial Cables

#### **Engineering data**

#### Cable design

Centre conductor . . . . silver-plated copper-clad steel wire Dielectric . . . . . . . solid extruded PTFE Outer conductor . . . . spiral strip of silver plated copper . . . & round wire silver plated copper braid, coverage 100% Jacket material . . . . . . FEP, Flame-retardent, Blue

#### **Electrical data**

| Impedance                      | 50 Ohms              |
|--------------------------------|----------------------|
| Capacitance                    | 94 pF/m              |
| Velocity of signal propagation | 70%                  |
| Signal delay                   | 4,8 ns/m             |
| Working voltage, maximum       | 1900V RMS            |
| Attenuation, nominal           | see graph right      |
| Power, nominal                 | see graph right      |
| Suitable for frequencies       | up to 20 GHz         |
| Shielding effectiveness        | typically <-100 dB/m |

#### General data

| Flammability, passes | IEC 60 | 332-3 |
|----------------------|--------|-------|
| Minimum bend radius  |        |       |
| single bend          |        | 10mm  |
| multiple bends       |        | 10mm  |

#### **Connectors**

Connector.....as semi-rigid M17/130-RG402

#### **Additional information**

#### Multibend 402 FJ (Standard):

| Jacket                | FEP, Blue    |
|-----------------------|--------------|
| OD                    | 4,1mm        |
| Weight, nominal       | 43kg/km      |
| Operating temperature | 55 to +165°C |

#### Multibend 402 HFJ

| Jacket                | halogen-free, flame-retardent, Blue |
|-----------------------|-------------------------------------|
| OD                    |                                     |
| Weight, nominal       |                                     |
| Operating temperature | 30 to +80°C                         |

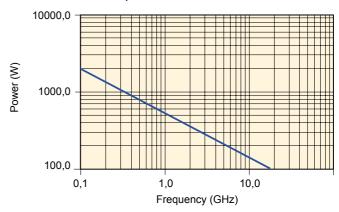
Delivered on standard spools in long lengths, giving less waste than semi-rigids.

## Nominal values @ +25°C ambient temperature 2,5 2,0 1,5 1,0

#### **Average Power**

16

18


**Cable Attenuation** 

Ambient temperature 40°C at sea level & VSWR1.0

8

Frequency (GHz)

10



#### **Custom design**

Attenuation (dB/m)

0.5

0,0

All MIL types of coaxial cables can be manufactured using the Multibend method or process.

Multibend can be manufactured with a non-magnetic SPC conductor if required.

We can also manufacture a completely halogen-free version.

Different types of outer jacket are also available. Please ask for details.

A completely halogen-free version is available for all types.

Website.www.benelec.com.auEmal.inquiries@benelec.com.auTelephone.+61-2- 9364 7000

## The Flexible Alternative to Semi-Rigid Coaxial Cables

## Type: Multibend 405

#### **Engineering data**

#### Cable design

Centre conductor ..... silver-plated copper-clad steel wire Dielectric .... solid extruded PTFE Outer conductor .... spiral strip of silver plated copper .... & round wire silver plated copper braid, coverage 100% Jacket material .... FEP, Flame-retardent, Blue

#### **Electrical data**

| Impedance                      | 50 Ohms              |
|--------------------------------|----------------------|
| Capacitance                    | 94 pF/m              |
| Velocity of signal propagation | 70%                  |
| Signal delay                   | 4,8 ns/m             |
| Working voltage, maximum       | 1500V RMS            |
| Attenuation, nominal           | see graph right      |
| Power, nominal                 | see graph right      |
| Suitable for frequencies       | up to 20 GHz         |
| Shielding effectiveness        | typically <-100 dB/m |

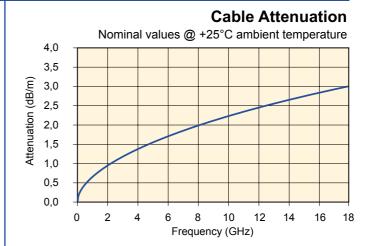
#### General data

| IEC 60 332-3 |
|--------------|
|              |
| 6mm          |
|              |
|              |

#### **Connectors**

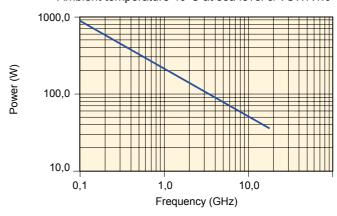
Connector.....as semi-rigid M17/133-RG405

#### **Additional information**


#### Multibend 405 FJ (Standard):

| Jacket                     | P, Blue |
|----------------------------|---------|
| OD                         | 2,6mm   |
| Weight, nominal            | 9kg/km  |
| Operating temperature55 to | +165°C  |

#### Multibend 405 HFJ


| Jacket                | halogen-free, flame-retardent, Blue |
|-----------------------|-------------------------------------|
| OD                    |                                     |
| Weight, nominal       |                                     |
| Operating temperature | 30 to +80°C                         |

Delivered on standard spools in long lengths, giving less waste than semi-rigids.



#### **Average Power**

Ambient temperature 40°C at sea level & VSWR1.0



#### **Custom design**

All MIL types of coaxial cables can be manufactured using the Multibend method or process.

Multibend can be manufactured with a non-magnetic SPC conductor.

We can also manufacture a completely halogen-free version. Different types of outer jacket are also available.

Please ask for details.

A completely halogen-free version is available for all types.



#### Coaxial Cables for Medium-Frequency Applications

#### Formulas for Coaxial cables

#### Characteristic impedance

The term expressing the ratio of voltage to current in a cable of indefinite length and without SWR. For coaxial cables it is called characteristic impedance and measured in ohms  $(\Omega)$ . Usually manufactured in 50, 75 and 95 ohms impedance.

$$Z_0 = \frac{60}{\sqrt{\varepsilon}} \cdot \ln \left( \frac{Dm}{d} \right) \text{ or } Z_0 = \frac{3333}{V_p \cdot C} \text{ or } Z_0 = \sqrt{\frac{L}{C}} \left[ \Omega \right]$$

#### Capacitance

Capacitance is the ability to store and release electrical energy from voltage.

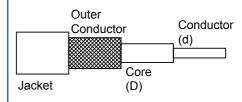
$$C = \frac{\varepsilon \cdot 55,6}{\ln(\frac{Dm}{d})}$$
 or  $C = \frac{3333 \cdot \sqrt{\varepsilon}}{Z_0}$  [pF/m]

#### Velocity of propagation

The ratio between the signal speed in a cable and light velocity in vacuum (300,000 km/s). Expressed as a fraction or as a percentage of the speed of light. If the speed of light is 100% in vacuum, the value for solid PTFE is 70%

$$V_p = \frac{1}{\sqrt{\varepsilon}}$$
 or  $V_p = \frac{3333}{Z_0 \cdot C}$ 

#### Time delay


Time delay is the time for the signal to travel a certain distance. For solid PTFE the delay is 4,8 nano seconds per metre. For light in vacuum the delay is 3,3 ns/m.

$$t = 3.33 \cdot \sqrt{\varepsilon}$$
 or  $t = \frac{3.33}{\text{Vp}} \text{ [ns/m]}$ 

#### Inductance

Inductance is the ability to store and release electrical energy from current.

$$L = 0.2 \cdot \ln\left(\frac{Dm}{d}\right) \text{ [µH/m]}$$



#### where

D = dielectric core diameter

d1 = diameter of outer conductor wire strand

Dm = D+1,5d1

d = conductor diameter

V<sub>p</sub> = velocity of propagation

Z<sub>o</sub> = characteristic impedance

c = capacitance

e = dielectric constant. (2,05 for PTFE)

t = time delay

L = inductance

In any transmission line there is the possibility of the energy being transmitted in a variety of modes depending on the frequency and the construction of the transmission line. The top frequency specified (g) for a coaxial line is the highest frequency that can be used where only the  $\mathsf{TEM}_{\infty}$  mode will be supported.

#### **Custom Design**

All coaxial cables can be produced according to individual customer requirements.

Website.....www.benelec.com.au
Email .....inquiries@benelec.com.au
Telephone .....+61-2-9364 7000